Wednesday, August 17, 2011

Greenland's Icebergs In A Warming World













ILULISSAT, Greenland (AP) -- Greenland's Inuit people have countless terms in their language to describe ice in all its varieties. This gallery of photographs by AP's Brennan Linsley likewise is something of a visual vocabulary for the striking and beautiful forms ice takes on and around the giant Arctic island.


Greenland's ice sheet and glaciers are melting more and more as the world warms, sending gushing water and towering icebergs into the sea, threatening to raise ocean levels worldwide in the years and decades to come. Researchers are hard at work trying to gauge how much will melt and when.

Some of the most spectacular icebergs are calved from the 6-kilometer-wide (4-mile-wide) Jakobshavn Glacier near this town on the west central coast, icebergs that push out into the 50-kilometer-long (30-mile-long) Ilulissat Ice Fjord, and then into Disko Bay and eventually the North Atlantic.

The ice, much of it tens of thousands of years old, originates in the 1.7-million-square-kilometer (660,000-square-mile) ice sheet covering 80 percent of Greenland.



O Parque Natural do Tejo Internacional celebra o 11.º aniversário


O Parque Natural do Tejo Internacional celebra o 11.º aniversário no dia 18 de Agosto. O tema escolhido para celebrar o aniversário é o Turismo de Natureza Sustentável, com a apresentação das “Rotas Naturais no PNTI”, que decorre no Hotel Tryp Colina do Castelo, dia 18 de Agosto de 2011, com início previsto para as 15:30h.


A riqueza natural que alberga, destacando-se o conjunto das arribas do Tejo Internacional, com biótopos característicos das paisagens meridionais, caso das zonas de montado de sobro e de azinho e estepes cerealíferas bem como espécies da flora e da fauna de inegável interesse, são as principais razões para o reconhecimento do valor natural desta área, através da sua classificação como parque Natural do Tejo Internacional (Decreto-Regulamentar nº 9/2000, de 18 de Agosto).

Destacam-se, igualmente pelo elevado valor, as linhas de água com comunidades vegetais ripícolas associadas e, no domínio da avifauna, espécies estritamente protegidas por convenções internacionais.

Abrangendo uma superfície de 24.406 ha, que se sobrepõem em 79,43 % ao território classificado como Parque Natural do Tejo Internacional, a Zona de Protecção Especial do Tejo Internacional, Erges e Ponsul (criada pelo Decreto-Lei 384-B/99, de 23 de Setembro) integra a Rede Natura 2000.

Fonte: http://portal.icnb.pt/

Parabéns!!!







25 Dicas para uma casa mais sustentável



Comprar, construir ou arrendar uma casa é uma decisão que envolve muitas e importantes questões. Se pretende mudar de casa, eis a altura certa para olhar para o futuro espaço de forma mais sustentável. A Quercus vai tentar ajuda-lo nesta decisão, de forma a torná-la social, económica e ambientalmente equilibrada. Apresentando 25 sugestões, vamos tentar contribuir para que a sua decisão seja o mais próxima dos seus padrões de conforto, “poupando na sua carteira” ao mesmo tempo que “poupa no ambiente”!

1. A localização de um edifício é muito importante no que respeita às necessidades térmicas do espaço interior. Estas necessidades estão contempladas no Regulamento de Características de Comportamento Térmico dos Edifícios (RCCTE), onde se apresentam estratégias que contribuem significativamente para a melhoria do desempenho térmico dos edifícios. Procure aconselhamento especializado para verificar se a casa que vai habitar cumpre este Regulamento tanto para a situação de Verão como para a situação de Inverno.

2. Prefira um local arejado com pouco trânsito automóvel, o que se traduz em menos poluição e, bem servido de transportes públicos, para que os possa usar em alternativa. Se lhe for possível habitar próximo do seu local de trabalho, desloque-se a pé. Far-lhe-á bem à saúde e contribuirá para um ambiente mais saudável.

3. O Sol é a nossa maior fonte de energia. Tire disso o melhor proveito escolhendo uma casa maioritariamente orientada a Sul de molde a minimizar consideravelmente as necessidades de aquecimento durante a estação de Inverno. A radiação solar incide nas janelas de vidro e aquece de forma natural o espaço interior.

4. Durante a estação de Verão, há que impedir o sol de incidir nas janelas voltadas a Sul, verifique se as janelas possuem uma protecção pelo lado exterior: uma pala, persiana ou até vegetação (de folha caduca no Inverno).


5. Se a casa que vai habitar tiver janelas orientadas a nascente (Este) ou poente (Oeste) necessita obrigatoriamente de persianas exteriores, pois é nestas orientações que o sol incide mais horizontalmente. É imperativo, durante a situação de Verão, correr estas persianas, protegendo o vidro, pela manhã a Nascente e ao final da tarde a Poente.

6. O lado Norte da casa deve ser reservado a W.C.s, arrumos, ou outras divisões que necessitem de poucas aberturas (ou mesmo nenhuma) para o exterior. É nesta orientação que se originam grandes perdas térmicas através do vidro durante a estação fria. Se for impossível a escolha de uma casa sem divisões orientadas a Norte, então tenha sempre presente esta questão.

7. As fachadas envidraçadas originam grandes ganhos térmicos na estação quente e perdas térmicas muito consideráveis durante a estação fria, o que implica sistemas de climatização adicionais para corrigir este efeito. A área de envidraçado de uma divisão não deve ultrapassar 15% da área de pavimento dessa divisão.

8. Devemos também tirar partido do sol no que respeita a iluminação. Prefira divisões iluminadas naturalmente para minimizar a necessidade de iluminação artificial. Existem no mercado equipamentos de transporte de luz natural para divisões não iluminadas. Este “transformador de luz natural” canaliza a luz do exterior para o interior.

9. Sempre que necessária a iluminação artificial, opte por lâmpadas de baixo consumo e por iluminação localizada (só apenas onde é de facto necessária). Esta iluminação deverá ser provida de dispositivos para regulação do ambiente luminoso.

10. Se a casa que vai habitar ainda não possui equipamentos electrodomésticos, prefira, sempre que possível, os de Classe A, mais eficientes no que respeita ao consumo de energia e ao contrário do que se pensa não são necessariamente mais caros.

11. A localização e orientação solar, bem como a construção do edifício, é determinante para se ter uma casa confortável, do ponto de vista térmico. Verifique na Ficha Técnica da Habitação (FTH) como são as paredes exteriores do edifício. Deverá optar por soluções de parede dupla com isolamento ou parede simples com isolamento pelo exterior da parede.

12. O isolamento térmico adequado é determinante para evitar perdas de calor no Inverno ou ganhos de calor no Verão, mantendo assim uma temperatura constante no interior de sua casa. Prefira um material de isolamento com um baixo índice de condutibilidade térmica (U-value), mas com baixo teor de energia incorporada (energia consumida desde a extracção da matéria prima até ao produto final).

13. Verifique as caixilharias e o vidro. Aquelas com corte térmico (são fabricadas de forma a promover uma redução da transmissão térmica entre 40% a 60%) e vidro duplo são as mais indicadas do ponto de vista de conservação de energia. No entanto, deverá optar por caixilharias com grelhas de ventilação, para facilitar a renovação do ar.

14. Dê especial importância aos materiais utilizados, preferindo os de baixo impacte ambiental, não só na sua produção, mas também ao longo da sua vida útil. Informe-se sobre o poder de reutilização ou reciclagem dos materiais utilizados na sua casa.

15. É importante escolher materiais homologados e/ou com marcação CE e, nos casos mais importantes, solicitar os certificados de conformidade de acordo com as especificações aplicáveis, emitidos por entidades idóneas e acreditadas, seguindo as instruções dos fabricantes para a aplicação dos mesmos.

16. Verifique se a cobertura do edifício (terraço ou telhado), está adequadamente isolada (poderá fazê-lo através da FTH). Prefira um isolamento imputrescível e resistente à água, preferencialmente colocado sobre a laje e sobre a camada de impermeabilização.

17. Se o pavimento de sua casa estiver em contacto com o solo, opte por isolantes térmicos imputrescíveis e resistentes à água, ou pavimentos com caixa-de-ar e devidamente impermeabilizados para evitar perdas térmicas ou outras patologias associadas através do solo (estas soluções construtivas devem vir explicadas na FTH)

18. A renovação do ar interior é muito importante para que se mantenham as condições de salubridade interior nos edifícios. Uma casa insuficientemente ventilada poderá gerar humidade através dos vapores que se formam, afectando o conforto ou mesmo a saúde dos habitantes. Verifique se as caixilharias possuem dispositivos que permitem a ventilação.

19. As cores utilizadas nas fachadas e coberturas também influenciam o conforto térmico. Seja selectivo na escolha da cor de sua casa, considerando que, as cores claras não absorvem tanto o calor como as cores mais escuras (enquanto uma fachada branca pode absorver só 25% do calor do sol, a mesma fachada, pintada com cor preta, pode absorver o calor do sol em 90%).

20. Se a casa que pensa habitar está provida de equipamentos que funcionam à base de energia renovável, tanto melhor! Se vai construir é altura de os aplicar. De entre os vários existentes no mercado destacam-se:

Colectores solares térmicos

Estes equipamentos captam a energia do Sol e transformam-na em calor, permitindo poupar até 70% da energia necessária para o aquecimento de água. O RCCTE diz que todos os edifícios novos com condições de exposição solar adequada serão obrigados a ter, sempre que seja tecnicamente viável.

Painéis solares fotovoltaicos

Estes painéis constituem uma das mais promissoras formas de aproveitamento de energia solar. Por meio do efeito fotovoltaico, a energia contida na luz do Sol é convertida em energia eléctrica. Estes sistemas podem ser utilizados em locais isolados, sem rede eléctrica, ou como sistemas ligados à rede.

Bombas de calor geotérmicas

São sistemas que aproveitam o calor do interior da Terra para o aquecimento do ambiente. Actuam como máquinas de transferência de calor. No Inverno, absorvem o calor da Terra e levam-no para sua casa. No Verão, funcionam como ar condicionado, retirando o calor de sua casa para arrefece-lo, no solo.

Mini-turbinas eólicas

A energia do vento acciona estes sistemas para fornecer electricidade a uma micro-escala. Embora as micro-turbinas eólicas mais comuns sejam colocadas no terreno, existem umas de pequena dimensão que podem ser colocadas no topo das habitações. Podem significar uma redução do consumo de electricidade de 50% a 90%.

Sistemas de aquecimento a biomassa

A biomassa pressupõe o aproveitamento da matéria orgânica (resíduos provenientes da limpeza das florestas, da agricultura e dos combustíveis resultantes da sua transformação). Em casa, este tipo de matéria pode ser utilizada, por exemplo, em sistemas de aquecimento, representando importantes vantagens económicas e ambientais.

21. Existem no mercado torneiras de regulação do fluxo de água, que permitem reduzir o caudal estimulando a poupança deste recurso. Se a casa que vai habitar não possui estas torneiras, existem peças acessórias redutoras de caudal.

22. Verifique se os autoclismos são providos de dispositivos de dupla descarga que induzem poupança de água. (Poderá ainda colocar quando possível, uma ou duas garrafas de água com areia no interior, dentro do depósito do seu autoclismo. Isso significa poupar até 3 litros de água por descarga).

23. Se vai construir a sua casa e tem terreno disponível, tem a possibilidade de a equipar com mini estações de tratamento de água ou mini cisternas de armazenamento de águas pluviais, para posteriores utilizações em descargas não potáveis (como regas de jardim, autoclismos ou lavagem de automóveis).

24. No caso de vir a habitar um edifício de vários condóminos, verifique se no prédio existe espaço destinado a contentores adequados à separação de resíduos domésticos.

25. Dentro de sua própria casa opte sempre por um depósito de resíduos domésticos com pelo menos três divisões para estimular a separação destes resíduos.

Para terminar, se tiver oportunidade de reabilitar em vez de construir de novo, e se essa opção for economicamente viável, está desde logo a ter uma atitude mais sustentável. Reabilitar um edifício existente possibilita a diminuição dos impactes resultantes da energia associada à produção de um novo e da extracção das respectivas matérias-primas, para além de contrariar a tendência do crescimento urbano excessivo e a ocupação e impermeabilização de novas áreas de solo importantes para a conservação dos valores e equilíbrios naturais e para as várias actividades humanas!

Fonte: www.quercus.pt







Monday, August 15, 2011

Ambientalistas apelam aos caçadores que não cacem durante a 2ª quinzena de Agosto



A Liga para a Protecção da Natureza defende que, apesar de o calendário venatório permitir o exercício da actividade nesta época, os praticantes devem abster-se de a realizar por ser uma altura em que muitas espécies estão ainda a criar, para salvaguardar o futuro a médio/longo-prazo destas populações e, consequentemente, da própria actividade cinegética.


O Secretário de Estado das Florestas e do Desenvolvimento rural anunciou na semana passada a retirada do melro da lista de espécies cinegéticas cedendo às pressão dos ambientalistas e de inúmeros cidadãos que revelaram indignados com a abertura da caça a esta ave que faz parte da cultura portuguesa.

No entanto, as Organizações Não-Governamentais de Ambiente (ONGA), apesar de saudarem o anúncio do Secretário de Estado, alertaram para a existência de vários outros erros no calendário venatório que urge corrigir.

Um desses erros é a abertura da caça ainda em período de criação de diversas espécies de aves, algumas delas em declínio acentuado, como é o caso da rola-brava.

Perante o aproximar da data e não tendo sido anunciadas quaisquer alterações no calendário venatório relativas a este aspecto, a LPN – Liga para a Protecção da Natureza apela directamente aos caçadores, no sentido de, ainda que o possam fazer, absterem-se de caçar na 2ª quinzena de Agosto.

Os ambientalistas sustentam que “abdicar de caça nestes 15 dias é garantir a continuidade das espécies que ainda se encontram a criar, elevar os números para os anos cinegéticos seguintes e aumentar a qualidade do acto de caça”.

Adicionalmente, a LPN já enviou uma carta à Ministra a Agricultura, do Mar, do Ambiente e do Ordenamento do Território, pedindo a revogação da Portaria que estabelece o calendário venatório, que é válida também para as épocas de 2012/2013 e 2013/2014.

Por seu lado, a SPEA – Sociedade Portuguesa para o Estudo das Aves, que lançou a campanha “Eu vou dizer ao Governo que não quero que cacem os nossos melros” faz várias outras recomendações de alterações ao calendário venatório e à gestão da caça, nomeadamente, que se volte a fixar o calendário venatório anualmente, o que permite ter em conta as alterações anuais nas populações cinegéticas, que se proíba o uso de munições de chumbo em zonas húmidas para evitar o envenenamento de milhares de aves como patos, que não seja permitida a caça de patos em Agosto-Setembro, e que se removam da lista venatória espécies como a Rola-comum e o Estorninho-malhado, cujos efectivos populacionais têm vindo a diminuir de forma dramática.

Fontes: LPN - CI e SPEA – CI



Carbon Recycling: Mining the Air for Fuel


Recycling bottles, cans, and newspapers is on any short list of simple actions for a cleaner environment. If only it were as easy to collect and reuse carbon dioxide—that greenhouse gas waste product that the world is generating in huge volume each day by burning fossil fuels.


In fact, a handful of start-up companies and researchers are aiming to do just that.

Recycling carbon dioxide is a great deal more involved than setting out separate bins for glass, aluminum, and paper. But many scientists believe that it is not only worth the effort, but a crucial endeavor. The climate change threat to the planet is now so great, they argue, that any effort to address the problem will have to include so-called "carbon negative" technologies. That means actually sucking the greenhouse gas out of the atmosphere and doing something productive with it.

The idea of capturing carbon dioxide (CO2) from coal power plants or oil facilities and storing it underground has gotten plenty of attention. Several pilot projects are operating or under construction, although a major project in West Virginia was abandoned last month due to cost concerns.

There has been less focus on the idea of actually reusing or recycling CO2. But science has long known that it’s possible to recombine carbon from CO2 with hydrogen from water to make hydrocarbons—in other words, to make familiar fuels such as gasoline. The problem, ironically, has been that the process requires a lot of energy.

But pioneering researchers and entrepreneurs argue the technology is close at hand for recycling CO2 back into fuel for use in today’s engines. It might even involve technology to absorb carbon dioxide directly out of the air, instead of out of coal plant flue gas. (See related story, "Out of Thin Air: The Quest to Capture Carbon Dioxide") Instead of drilling for oil to power cars and trucks, they say, we could be pulling the ingredients to make hydrocarbons out of thin air.

"You have all this CO2—it’s nasty stuff—what are you going to do with it?" asks Byron Elton, chief executive of Carbon Sciences, a Santa Barbara, California start-up. "People are saying, ‘Compress it, hide it.’ We’re saying, ‘No, give it to us and we can turn it back into gasoline.’ "

Peter Eisenberger, a physicist who founded the Earth Institute at Columbia University, is cofounder of Global Thermostat, a company that is working on technology to capture carbon dioxide from air with the aim of recycling, not storage, in mind. "In my opinion, closing the carbon cycle and having the technology to combine CO2 and hydrogen is a wonderful future," Eisenberger says. "Imagine a future where the major inputs for fuel are water and CO2."

Energy In, Energy Out

Of course, the oil drilled and pumped from underground holds the energy of eons' worth of sunlight energy collected by plants and stored as organic matter. Over millions of years of heat and pressure, the energy in that organic matter has been further concentrated to yield hydrocarbons such as oil, natural gas, and coal.

Anyone who wants to create hydrocarbon fuel above ground will have to supply the energy to isolate the hydrogen and carbon atoms and put them together. "There’s no free lunch," says Hans Ziock, a technical staff member at the U.S. Department of Energy’s (DOE) Los Alamos National Laboratory, coauthor of a white paper on carbon capture from air.

"You have to put energy in to re-create the fuel," he explains. "And because re-creation is never 100 percent efficient, you end up putting more energy in than you get out." Due to the "energy penalty" of creating hydrocarbon fuel indirectly, he says, it has always made more sense for society to use the liquid fuels made directly from crude oil as long as crude oil is available. "If nature has done this for you for free, why not use it?" says Ziock.

However, in a world that is now pumping its crude oil from ultra-deep water, squeezing it from tar sands, and looking for it beneath Arctic frontiers, the time may be ripe for alternatives. Ziock says he believes the hope for greater domestic self-sufficiency for fuel alone makes research into carbon dioxide recycling worthwhile. But he warns that as a means to reduce carbon dioxide in the atmosphere, the benefits of this approach will be limited unless the energy to create the hydrocarbon fuel comes from a source other than the burning of more fossil fuel.

That’s why the focus of the "Sunshine to Petrol" project at U.S. DOE’s Sandia National Laboratories in Albuquerque, New Mexico, and Livermore, California, has been on creating a high-efficiency chemical heat engine based on concentrated solar energy to power its process for making fuel.

"Hydrocarbon fuel has a lot of energy packed in," says Ellen Stechel, who manages the Sandia project. "All the energy came from the sun, and must again come from the sun—just faster and with greater efficiency." To create hydrocarbon fuel, she says it is possible to use solar energy, just as nature does. "But we need to collect it from a wide area to pack it into something very dense," she explains. "People say the sun is free, and that’s true, but the collectors to collect all that sun are not free."

The prototype solar reactor that the Sandia researchers have developed is designed to use a huge array of mirrors to collect and concentrate the sunlight into a very strong beam that is funneled onto metal oxide rings inside each reactor. The rings rotate in and out of the sunlight, heating to a temperature of more than 2,550°F (1,400°C), and then cooling to less than 2,010°F (1,100°C). These rings are then exposed either to carbon dioxide or to water. At the high temperature, the metal oxide rings release some oxygen and at the lower temperature the rings steal oxygen atoms from either the CO2 or the H2O molecules. That thermochemical reaction leaves behind carbon monoxide or hydrogen gas (the mixture is often called "syngas")—the building blocks of hydrocarbon fuel.

The Sandia prototype’s solar collector has an area of about 20 square meters (215 square feet) for a reactor the size of a beer keg, Stechel says. About 300,000 acres (121,400 hectares) of mirrors would be required to collect enough sunshine to make the equivalent of 1 million barrels of oil per day, she says. (The world currently consumes about 86 million barrels per day of petroleum and other liquid fuels, including biofuels.)

Stechel says that durability of the hardware remains an issue, and the researchers are continuing to work on making the system as efficient as possible so it can be commercially successful and used on a large scale.

Catalyst for Change

Elton’s firm, Carbon Sciences, focuses on the post-collection phase: turning carbon into fuel. It does this by combining CO2 with natural gas in the presence of a proprietary metallic catalyst it has developed and licensed. (The company says it is made of the common metals, nickel and cobalt, supported by aluminum and magnesium.)

Carbon Sciences says its test facility is successfully melding CO2 with methane (the primary constituent of natural gas) to produce a syngas that can be converted into ordinary fuels.

The process of turning syngas into transportation fuel is a well-established technology, and there are already commercial gas-to-liquids facilities in the world. But those processes rely on steam or oxidation to produce the syngas. Carbon Sciences argues that its process—CO2 reforming, or dry reforming, of natural gas—would be a game changer because it would produce fuel while using up waste CO2 that otherwise would be emitted to the atmosphere. Also, says Elton, using readily available CO2 as a reactant should make capital and operating costs significantly lower than current commercial approaches that use oxygen, since that’s expensive and capital-intensive.

"We believe our approach will be the key to cost-effective transformation of greenhouse gases to fuel on a global scale," he says.

Although there have been efforts at dry reforming in the past, Carbon Sciences says its catalyst is uniquely robust and able to stand up to the harsh industrial process of making the fuel. The catalyst also is comprised of more affordable and abundant metals than those used in earlier efforts.

Of course, because the fuel produced will be a drop-in replacement for ordinary gasoline and diesel, driving will still release CO2 to the atmosphere. But Elton says there are significant advantages in using recycled fuel. "The carbon . . . is used twice, instead of it going into the air," he says. "It also finally addresses the issue of energy security"—as the fuel can be made domestically from two abundant resources in the United States—CO2 and natural gas.

Outside scientists say the CO2 advantages of the system will depend on how it is designed, including where it gets its energy. Elton says minimizing net energy will be a high priority, with the potential for an integrated system that reuses some of the energy or fuel created in the process. He maintains that Carbon Sciences’ process for creating fuel is CO2-neutral, in contrast to the refining of ordinary crude oil into gasoline, which results in energy use that releases CO2 before the fuel even gets to the gas tank. After encouraging test results earlier this year, Elton said in July that his company is working on a demonstration project to produce samples of diesel fuel that can be used by existing diesel vehicles, like trucks and buses.

It is important to note that in the reforming process, natural gas provides some of the hydrocarbons in the fuel. Other efforts at CO2 recycling-into-fuel aim to get all of the hydrocarbons from CO2 alone.

In the United Kingdom, Air Fuel Synthesis aims to use atmospheric CO2 and wind energy to produce aviation fuels in a concept demonstration at an initial rate of 1 liter (about one-quarter gallon) per day.

Filling Up With Renewables

Although the challenges are great, the research is important, says a policy brief issued last month by the Centre for Low-Carbon Futures in England. Researchers from the University of Sheffield and the Energy Research Centre of the Netherlands said that what they call "Carbon Capture and Utilization" could overcome many of the drawbacks of carbon capture and storage, including the difficulty in finding enough underground storage space, the possibility of leakage, long-term liability issues, and problems with public acceptance. Creating something of value also would help offset the costs of carbon capture, the researchers said.

And creating liquid fuels through carbon recycling could be important in the long run for a society that aims to reduce its dependence on oil. Although there’s been much excitement about electric cars, the report noted that electric batteries still can’t provide the needed range for aviation and long-haul sea and road transport. The recycling of CO2 could be the path for putting renewable energy into the fuel tanks of ordinary combustion engines, the report said.

That’s why Stechel, of Sandia, says the benefits of "reversing combustion" or "closing the cycle" on CO2 could be enormous. "We could have a technology that could produce the same fuels we get from petroleum and preserve today’s infrastructure," she says, "fuels that could go into the vehicles of today as well as the ones of tomorrow."